A novel SOX18 mutation uncovered in Jordanian patient with hypotrichosis–lymphedema–telangiectasia syndrome by Whole Exome Sequencing

Fatma Bastaki a, Madiha Mohamed a, Pratibha Nair b, Fatima Saif a, Nafisa Tawfiq a, Mahmoud Taleb Al-Alib, Oliver Brandau c, Abdul Rezzak Hamzeh b, *

*Pediatric Department, Latifa Hospital, Dubai Health Authority, Dubai, United Arab Emirates
bCentre for Arab Genomic Studies, Dubai, United Arab Emirates
cCentogene AG, Schillingallee 68, Rostock 18057, Germany

Article info
Article history:
Received 27 August 2015
Received in revised form 28 October 2015
Accepted 23 November 2015
Available online 26 November 2015

Keywords:
Sry-related HMG box
Alopecia totalis
Lymphedema
Arab

Abstract
The SOX18 gene encodes a transcription factor that plays a notable role in certain developmental contexts such as lymphangiogenesis, hair follicle development and vasculogenesis. SOX18 mutations are linked to recessive and dominant hypotrichosis–lymphedema–telangiectasia syndrome (HLTS). In this study we report on a novel heterozygous mutation in SOX18 in a Jordanian patient suffering from HLTS that was revealed by Whole Exome Sequencing. In this case, a frameshift caused by 14-nucleotide duplication in SOX18 appeared de novo resulting in a premature translational stop at the N-terminal region of the central trans-activation domain. Here we present the clinical manifestations of the above mentioned molecular lesion in the light of what is known from published SOX18 mutations.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction
Hypotrichosis–Lymphedema–Telangiectasia syndrome (HLTS) combines features that represent failure of proper vascualrization, angiogenesis and hair formation. Dysfunctional development of blood vessels results in cutaneous telangiectasias and dilations of superficial vasculature, while disturbances in the maintenance of the lymphatic system are manifested by lymphedemas in the lower limbs and eyelids. The third constituent of this syndrome involves defects in hair follicle development, leading to progressive scalp hair loss and absence of eyebrows and eyelashes. Irrthum et al. [1] established the link between these symptoms and mutations in a member of the SOX (Sry-related HMG box) family; namely SOX18. Animal studies have indicated that SOX18 plays a major role in lymphangiogenesis and angiogenesis [2,3], and in cardiovascular development and hair follicle formation [4]. To date, four mutations in this gene have been identified in HLTS patients from five different families (Table 1). Although the cardinal features of this syndrome remain the same, recent reports have shown the development of renal failure or aortic dilatation in some of the patients [5,6].

SOX18 belongs to the SOX-F group, and it encodes a transcriptional activator that plays important roles in the development of hair, lymphatic and blood vessels. Human SOX18 contains a HMG-type DNA-binding domain and two trans-activation domains (TAD) [7,8]. The above mentioned roles of SOX18 clearly explain the phenotypic gamut that characterizes HLTS. Furthermore, there seems to be two types of SOX18 variants at the heart of causality of HLTS: missense mutations affecting the HMG box and nonsense mutations leading to truncated SOX18 moieties that lack the trans-activation function. The latter class of mutations follows a dominant mode of inheritance, while the former class is generally recessive [1].

Here we report a case of HLTS in a Jordanian patient that is caused by a novel heterozygous mutation in SOX18. The mutation, which appeared de novo in the patient, involves 14-nucleotide duplication causing a frameshift and a premature translational stop at the N-terminal region of the central TAD. This study describes the full clinical consequences of this mutation along with a contextual analysis of the underlying molecular lesion that was...
uncovered by Whole Exome Sequencing (WES) of SOX18.

2. Methodology

2.1. Exome capture and sequencing

Upon informed consent, peripheral blood samples were collected from the patient and his parents. Thereafter, DNA was extracted from blood samples according to standard protocols. Amplicon library construction, exome capture, sequencing, and standard data analysis for affected child and his parents was performed by Centogene (Rostock, Germany). First, approximately 37 Mb (214,405 exons) of the Consensus Coding Sequences (CCS) were enriched from fragmented genomic DNA by > 340,000 probes designed against the human genome. The kit used for exome capturing is Nextra Rapid Capture Exome (Illumina) and the amplicons were covered at least by 20X.

For the medical evaluation, all disease causing variants reported in ClinVar or in CentoMD® as well as all variants with minor allele frequency (MAF) of less than 1% in ExAc database were considered. Variants that possibly impair the protein sequence, i.e. disruption of conserved splice sites, missense, nonsense, read-throughs, or small insertions/deletions, were prioritized. All relevant inheritance patterns are considered.

The clinically relevant variant identified by NGS was validated by Sanger sequencing in the patient and his parents to confirm if it is a true positive. Therefore, the SOX18 gene was analyzed by PCR and sequencing of both DNA strands of the entire coding region and is a true positive. Therefore, the SOX18 disrupts conserved splice sites, missense, nonsense, read-throughs, or small insertions/deletions, was prioritized. All relevant inheritance patterns are considered.

The clinically relevant variant identified by NGS was validated by Sanger sequencing in the patient and his parents to confirm if it is a true positive. Therefore, the SOX18 gene was analyzed by PCR and sequencing of both DNA strands of the entire coding region and is a true positive. Therefore, the SOX18 disrupts conserved splice sites, missense, nonsense, read-throughs, or small insertions/deletions, was prioritized. All relevant inheritance patterns are considered.

2.2. Bioinformatic analysis

The functional consequences of the variant were obtained using SIFT Indel [9], which is available at http://sift-dna.org/www/SIFT_indels2.html. The latter algorithm predicts the effects of indels at 84% accuracy, it is an extension of the SIFT (Sorting Intolerant From Tolerant) algorithm, which predicts the effect of amino acid substitutions [10].

3. Results and discussion

The male patient was born at term via normal vaginal delivery. Initial antenatal ultrasound scan showed ascites with mild pericardial effusion, and chylothorax. After medically intervening to resolve the latter symptoms, ultrasound showed no ascites, pericardial/pleural effusion or bilateral hydrocele. Normal results were obtained regarding the umbilical artery and Middle Cerebral Arterial Doppler. Amniocentesis had been performed and the karyotype was normal. Additionally, extensive investigations were done, including virological and Kleihauer–Betke tests, only with negative results. Postnatal examination revealed no edema, or ascites, and the child was hemodynamically stable.

At two days of age, the child was referred to a dermatologist due to his alopecia and abnormal skin color, the initial diagnosis was xerosis cutis, and cutis marmorata. His developmental history was normal. At 11-months of age, he was able to stand without support, crawl, hold and reach towards objects, demonstrate a pincer grasp, babble, respond to his name, demonstrate stranger anxiety, and laugh loudly. On examination, he was an alert and active boy. The following vital signs were reported: temperature: 36.2 °C, heart rate: 128/min, respiratory rate: 30/min and blood pressure: 125/67 mmHg. As for growth parameters, height: 78 cm (50th–75th centile), head circumference: 44.5 cm (just below 3rd centile), and weight: 10.8 kg (50th centile). He had distinct craniofacial features, including microcephaly, periorbital swelling, red thick everted lips, as well as absence of eyelashes and eyebrows.

The clinically relevant variant identified by NGS was validated by Sanger sequencing in the patient and his parents to confirm if it is a true positive. Therefore, the SOX18 gene was analyzed by PCR and sequencing of both DNA strands of the entire coding region and is a true positive. Therefore, the SOX18 disrupts conserved splice sites, missense, nonsense, read-throughs, or small insertions/deletions, was prioritized. All relevant inheritance patterns are considered.

At two days of age, the child was referred to a dermatologist due to his alopecia and abnormal skin color, the initial diagnosis was xerosis cutis, and cutis marmorata. His developmental history was normal. At 11-months of age, he was able to stand without support, crawl, hold and reach towards objects, demonstrate a pincer grasp, babble, respond to his name, demonstrate stranger anxiety, and laugh loudly. On examination, he was an alert and active boy. The following vital signs were reported: temperature: 36.2 °C, heart rate: 128/min, respiratory rate: 30/min and blood pressure: 125/67 mmHg. As for growth parameters, height: 78 cm (50th–75th centile), head circumference: 44.5 cm (just below 3rd centile), and weight: 10.8 kg (50th centile). He had distinct craniofacial features, including microcephaly, periorbital swelling, red thick everted lips, as well as absence of eyelashes and eyebrows.

The parents were non-consanguineous and healthy. There was no known family history of hydrops or of any dermatological condition. One of the patient’s paternal uncles died of a febrile illness at 2-years of age, while two of his paternal cousins had Down syndrome.

To uncover the underlying molecular cause of the phenotype displayed by the patient, Whole Exome Sequencing was performed for all available family members (index patient and parents). Consequently, a heterozygous 14bp-duplication was detected in the SOX18 (c.492_505dup), which creates a premature stop codon as predicted by the SIFT Indel algorithm. For the latter, we used the query 20, 62680168, 62680168,-1,GCCCGGCGGCTGGA, which contained the chromosomal coordinates of the indel, as per the naming given by Mutalyzer (https://mutalyzer.nl/).
terminus till the residue 168 at the start of the central transactivation domain, then a 13-aa mismatch follows, after that it ends with a premature stop (Fig. 2, B). This mutation is not described in the Exome Aggregation Consortium, Exome Aggregation Consortium, Exome Aggregation Consortium, Exome Aggregation Consortium, Exome Aggregation Consortium.
SOX18-negative childhood. In conclusion, this study reveals a novel dominant
mentioned above, the renal phenotype developed only later in
normal (creatinine: 0.2 mg/dL). Although our patient showed
found to be associated with cardiac defects. In this case, the patient
renal failure, while the other known termination mutation was
mutations that result in truncated SOX18 proteins. The dominant
ical abnormalities in patients (Table 1), particularly so in the case of
main features of HLTS, recent reports have shown additional clin-
tween members of SOX-F in the context of postnatal angiogenesis.
SOX18 along with other members of the SOX-F group, namely:
SOX7 and SOX17, seem to have overlapping functions in regulating
vascularization and postnatal angiogenesis. It is due to this
redundancy that null mutations in SOX18 can be compensated for
by other SOX-F members [12]. However, this redundancy may be
overcome by dominant negative SOX18 when present in a hetero-
ygous state.

Although lymphedema, telangiectasia and alopecia remain the main features of HLTS, recent reports have shown additional clinical abnormalities in patients (Table 1), particularly so in the case of mutations that result in truncated SOX18 proteins. The dominant negative mutation described above has been shown to be linked to renal failure, while the other known termination mutation was found to be associated with cardiac defects. In this case, the patient showed no aortic dilatation and his renal function appeared to be normal (creatinine: 0.2 mg/dL). Although our patient showed normal renal parameters, we are aware that in both the cases mentioned above, the renal phenotype developed only later in childhood. In conclusion, this study reveals a novel dominant negative SOX18 mutation linked to HLTS, which has a very limited number of reported causal molecular lesions worldwide, hence the high significance of this report.

Conflict of interest

Authors have no conflict of interest to declare.

Acknowledgments

Authors would like to thank the patient and his family for full cooperation. Thanks also go to Dubai Health Authority and Sheikh Hamdan Bin Rashid Al Maktoum Award for Medical Sciences for continuous and comprehensive support.

References